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Abstract

We sho;a.r'. under regularity conditions, that a counting process satisfies a large deviations
principle in R, a sample-path large deviations principle in the function space D, or the Girtner-
Ellis condition (convergence of the normalized logarithmic moment generating functions) if and
only if its inverse process does. We show, again under regularity conditions, that embedded
regenerative structure is sufficient for the counting process or its inverse process to have
exponential asymptotics, and thus satisfy the Gartner-Ellis condition. These results help
characterize the small-tail asymptotic behavior of steady-state distributions in queueing models,

e.g., the waiting time, workload and queue length.

Key words: large deviations, Gartner-Ellis theorem, counting processes, point processes,

cumulant generating function, waiting-time distribution, small-tail asymptotics.




1. Introduction and Summary

Let T= (T, :n 20} be a nondecreasing sequence of real-valued random variables with

To = 0, and let
NG)=max{n20:T,st},120. ¢}

Then N = {N(t) : ¢t 2 0} is a counting process and T is its inverse. Motivated by applications to
queues, see Chang [3], Chang, Heidelberger, Juneja and Shahabuddin {4], and Glynn and
Whitt {10], we want to relate the large deviations behavior of N to the large deviations behaviar
of T. This is in the same spirit as previous relations between other limits for N and T, such as the
law of large numbers and central limit theorem; see §7 of Whitt (16}, Theorem 6 of Glynn and

Whitt [8) and §2 of Massey and Whitt [12].

A real-valued stochastic process Z ® {Z(r) : ¢t 2 0} will be said to satisfy the Garmer-Ellis
condition with decay rate function y if its normalized logarithmic moment generating function
has a limit, i.e., if

+~) log Ee®2® — y(B) ast > w forall 0e R. )

(For a discrete-time process, we let 7 run through the positive integers in (2).) For the queucing
applications, we want to know when N and T satisfy (2) for 0 in an appropriate interval. In Glyan
and Whitt [10) we consider a single-server queue with unlimited waiting space and a stationary
sequence of interarrival times independent of a stationary sequence of service times. By
Theorem 1 and Proposition 2 there, if the partial sums of the interarrival times and service times
each satisfy (2) with decay rate functions y,(0) and y, (), respectively, with these decay rate
functions satisfying regularity conditions, then the steady-state waiting time has logarithmic
asymptotics of the form x~'logP(W > x) = —8° as x = e, where 6° is the root of the
equation w(0) = O, where y(8) = v, (8)-y,(~6). (We need (2) only in the neighborhood of

0°.) Given this result, we want to be able to relate (2) for the interarrival-ime partial sums (a




process of the form T) to (2) for the corresponding arrival counting process (a process of the form

N).

Since log Ee®Z is convex in  for any random variable Z by Holder's inequality, the decay rate
function y in (2) is necessarily convex with y(0) = 0. For nonnegative random variables Z,
logl-.'e"Z is also nondecreasing in 6, so that y(8) will be nondecreasing as well for the processes

we consider. Let B’ and B“ be the limits of the region of increase of y i.e.,

B = sup(6:y(8) = y(~w)} and B* = inf{0: Y(0) = y(e)} . 3)

The decay rate function W in (2) will be said to satisfy the auxiliary large deviations (LD)

regulanity conditions if (4)~(7) below hold:

g* >0, ‘ @)
v is differentiable everywhere in (~, B*) , 6
%._w'(e) = +oo if Y(P*) < oo (VY is steep) , and 6)

i = “y . 7
‘}IT%I,\V(G) w(B*) O]

Note that properties (4) and (5) imply u;a: v (0) > 0,s0that y(8) — + wcas® — f*.
Let 7 be the associated large deviations (LD) rate function (Legendre-Fenchel transform of y)
defined by
I(x) = y*(x) msup{Ox-y(0))} forxe R. (8)

By the Gartner {7]-Ellis (6] theorem, under conditions (2) and (4)~(7), the large deviations

principle (LDP) holds for Z with large deviations rate function /; i.e., for each Borei set A

- inf I(x) S ‘gg t~ogP(+712(1) € A)

€ A

S limr'iogP(1='Z(1) € A) S - inf I(x) ©
t=ben

ze A

where A° and A are the interior and closure of A; see $1IB of Bucklew {2}, §2.3 of Dembo and




Zeitouni (5] and §3.1 of Shwartz and Weiss [14). Moreover, the large deviation rate function /
and the decay rate functioh W are convex conjugates, i.e., they are closed (lower semicontinuous)

convex functions related by

y(0) = y**(8) = I'(0) = sup{Bx-/(x)) for e R ; 10)

see p. 183 of Bucklew (2].

A typical LD rated function / is depicted in Figure 1. Assuming that v is nondecreasing and
convex with y’(0) > O, then 7 is nonnegative and convex with 'l(x) = + o for x < 0,
I(y’(0)) = 0 and /(x) — = as x — . Hence, / is nordecreasing in the interval [y’ (0),00)
and nonincreasing in the interval (—e,¥’(0)]. Let ¥ and Y be the upper and lower limits of

finiteness for /, i.e.,

¥ = sup{x S Y (0): I(x) <o} andy = inf{x 2y (0):I(x) < o} . (1

We first determine conditions under which the Gartner-Ellis limits (2) for N and T are
equivalent. All proofs appear in §2. Let'y™! be the inverse of y when  is finite. It will be clear
for this result, and later results, that T need not be discrete-time and N need not be integer valued.
It suffices for N to be nonnegative and nondecreasing; then we can relate the processes by the
inverse map (26) below.

Theorem 1. If T satisfies (2) and (4)(7), then N does too, with the possible exception of (2) for
0 = PY% when wy(BY) < . Similarly, if N sasisfies (2) and (4)~(7), then T does 100, with the
possible exception of (2) for 8 = B} when yr(BY) < «. The decay rate functions are related

by

~B%. 0 < By = -wr (PP
Wn(0) = {~y7'(~0), By SO < BY (12)
+o, 0> Bl = —yr(Bh) = ~yr(~w)




and

-Bk . 0 < BT = ~yN(BY)
vr(8) = {-y5'(~8), Bt < 6 < By a3
+e, 8> Bt = ~wn(BN) = ~Yn(~)

for Br.Bi.BY and BY defined by (3) with yr and yy, where 0 > Br 2 o0, 0 > Bl 2 ~os,

0 < Bf S wand0 < By S = Moreover, the LD rate functions are related by

Ie(x) _‘{xly(l/x) .fn SxsSYW : (14)
+ oo , Otherwise ,

and
Io(x) = {x Iv(U/x) Y Sxsys s
+ oo , otherwise ,
where
=1/, =11t (16)
1
In(0) = im AL and [4y(0) = + if Yh =0 an
and
1
I7(0) = xlim N:x) and IT(0) = + oo if 7’7 =0, (18)

The ambiguous behavior of (2) at the upper boundary points cannot occur if ywy (8) > 0 and
y7(8) > Oforall 8in (~,0]. We could have included this condition with (4)~(7), but it is not -

required to get the LDP in (9).
The conditions of Theorem ] imply that one of the decay rate function W and Wy is a closed

convex function. The conclusion implies that both are. Figure 2 depicts the two inverse decay

rate functions yr and Yy on the same graph; yr appears in the usual position, while yn




increases to the left with its argument © increasing down.

To illustrate we give two simple examples. It is easy to see that the conditions of Theorem |

hold for these examples.

Example 1. For a deterministic stationary process, 7, =72 for all n, so tha
yr(0) = yy(8) = 6, while /7(1) = Iy(1) = 0andI7(x) = IN(x) = + o forx = 1.
Exarnple 2. For a rate-1 Poisson process, y1(8) = —log(1—-8),8 < 1, and yy(6) = e®-1.
Hence, Iy(x) = 1=x + xlogx, x21, and Iy(x) = I=x-xlogx, 0 S xS 1; while

It(x) = x-1+logx,0S xS l,and/r(x) = x+ logx-1,x 2 1.
The processes N and T are easily related via their behavior in semi-infinite intervals; i.e.,
ToSt ifand only if N(1) 2 n . 19)
From (19), we obtain foranyy > Oandn 2 1,
n~'log P(n~'T, > y) = y(yn)"'logP((ym)™'N(an) < y™!) . (20)

From (20) we easily get the following equivalence result.

Theorem 2. Let u be a nonincreasing function and let | be a nondecreasing function. (a) There

is convergence
n~YogP(n~'T, > y).-) u(y) as n = oo QU
at all continuity points .yof u if and only if
t~MogPU™IN() <y ) = Iy ) sy lu(y) as t = e 22)
for all continuity points of y~* of I(y~*).
(b) There is convergence
n~llegP(n'T, Sy) » l(y) asn = = (23)

for all continuity points y of ! if and only if




ogPU'NM 2y 2 a ) =y () as 1 - 4)
for all continuity points y=! and a(y™").

As a relatively easy consequence of Theorem 2, we can directly relate LDPs for N and 7. For
this purpose we say that the process Z satisfies a partial LDP if (9) holds for a proper subclass of
the Borel subsets. We say that an LD rate function is withour flat spots if for some ¥ it is strictly
decreasing where it is finite in (~ oo, X) and strictly increasing where it is finite in (X, ).
Theorem 3. Let I be a closed convex function on R without flat spots. A real-valued stochastic
process Z satisfies an LDP with rate function I if and only if it satisfies a partial LDP with rate

function [ with respect to all semi-infinite intervals (= e, y] and [y, o).

We combine Theorems 2 and 3 to relate the LDPs for T and N.
Theorem 4. An LDP holds for T with lower semicontinuous rate function I without flat spots if
and onmly if an LDP holds for N with lower semicontinuous rate function Iy without flat spots,

where It and Iy are related by (14)18). The functions | and u associated with T in Theorem 2

are

u(y) = —iaf I(x) and I(y) = - iaf Ir(x) , 25)
2y xsy

and similarly for (N,Iy).

For example, Theorem 4 and Cramér’s theorem for partial sums of i.i.d. random variables in

R in §2.2 of Dembo and Zeitouni (5] immediately imply that an LDP holds for the associated
renewal counting process.

Given that conditions (2) and (4)~7) for T or N directly imply that an LDP holds for T or N,
Theorem 4 implies that we get LDPs for both T and N under the conditions of Theorem 1.
Elementary convex analysis implies that the decay rate functions yy and yy and the LD rate

functions /T and /y are related by (12)<(18), see §2. The remaining step in the proof of




Theorem 1 (in §2) is to prove that the Gartner-Ellis limit (2) holds for both T and N.

We now discuss related results. First, we observe that a sample-path or function-space
version of Theorem 4 is easy to establish as well. For this purpose, recall that an LD rate function
1 is good if all the level sets are compact. Paralleling §7 of Whiu [16), for the function space
version it is convenient to work with the space say S, of real-valued functions x on [0, ) that are
right continuous with left limits, are unbounded above and have x(0) 2 0, endowed with the
Skorohod [15] M, topology extended to functions on [0,«). By Theorem 7.1 of [16], the first-

passage-time function, defined for any xe S by
Y1) =inf{s:x(s) >} ,1>0, (26)

is continuous on this space. Of course, a major reason for introducing this M; topology is that
the first passage time function in (26) is nof continuous in the topology of uniform convergence
on bounded intervals.

In the subset ST of nondecreasing functioas in S, the M; topology is equivalent to pointwise
convergence at all continuity points of the limit function. Note that the first passage time function
in (26) maps § into ST. Also note that {N(r)} is not directly mapped into (S, }, but instead
N~1(:) = S|;y1. # 2 0. However, the difference between S|y and S, is asymptotically
negligible.

Hence, we obtain the following result from the contraction principle; p. 110 of Dembo and
Zeitouni [S].

Theorem S. In the function-space (ST ,M ), a sample-path LDP holds for {n™'T |4 :n 2 1)
with good rate function iy if and only if a sample-path LDP holds for {n~' N(ar) : n 2 1} with
good rate function I N, where

InGx) = Irx™) . @n




For applications, it :< convenient 1o work with the restricions § f of the space § T 1o functions
on the subinter .. [0,t]. The inverse function in (26) is easily modified to produce a map from
S, t© S,T, and for suitably large ¢, the definition (26) applies in S,T,. Let s4€,(0) denote the
space of absolutely continuous functions ¢ on {0.¢), as in Mogulskii's [13] sample-path LDP for
partial sums of i.i.d. random variables in §5.1 of Dembo and Zeitouni [5). The following resuit
and Mogulskii’s theorem imply a sampie path LDP for renewal counting processes.

Theorem 6. The sample-path LDP holds for {n" Tyn2llin (S,T M) with good LD rate

Sfunction

7.0) = L Ir(@sNds. if ¢ 4€,(0) @8)
o , otherwise

for I a good rate function on R, for all t > Q. f and only if the sample-path LDP holds for

(n~'N(nt) 1 n 2 1} in (S] .M ) with good LD rase function.

7.0) = |l ING@(NES , if 9 € 2€,(0) 29
o , Otherwise

for Iy a good rate function on R, for all 1 > O, with I and Iy related by (14)(18).

We remark that the LD rate functions on .‘i,t in (28) and (29) are consistent with the onc
dimensional LDP; i.e., we can apply the contraction principle in §4.2 of Dembo and Zeitounu | !

with the projection map to obtain

Ir(z) = iuf{T7(9) : o€ 4%€,(0),6(1) = 2z} (30
= inf( [ 1r(@())ds : ge 4€,(0), #(1) = 2} = I7(D)

by the convexity of /1.




We remark that we could obtain the desired Gartner-Ellis limit (2) for both T and N if we stan
with a sample path LDP for one of T and N by applying Theorem 6 and Varadhan'’s integral
lemma; see §4.3 of Dembo and Zeitouni {S]. However, our conditions in Theorem 1 evidently do

not directly imply a sample-path LDP.

So far we have shown how to relate LD asymptotics for T and N. Now we want (0 obtain
general sufficient conditions for this LD asymptotics to hold for one of these processes. To do so.
we will exploit regenerative structure. In particular, we will assume that N(¢) is a cumulative
process with respect to a sequence of regeneration times {S, . n 2 0} and Sy = 0. (We could
equally well start with {T, }.) We will require that the distribution of t,, = S(n)-S(n~1) be
spread out; see p. 140 of Asmussen [1]. Our result is stronger than (2). It also applies to general
cumulative processes. Another LD result for regenerative processes is in Kuczek and Crank [11};

they use different arguments.
Let ¢(0,r) be the moment generating function of N(1), i.e.,
6(8,1) = Ee™W >0, (a1)

If N is a cumulative process, then ¢(0,) satisfies the renewal equation

0(8.1) = b(B.1) + Io'¢(e.:-s)c(e.ds) : (32)
where
b(6,1) = E[®® ; 7, > 1] (33)
and
G(8.dt) = E[e*™™ ; 1,ed1] . (34)

Let Y,' = N(S,) - N(S,‘-l).i 2l
Theorem 7. Suppose that N is a cumulative process with respect to { S, } where t, has a spread

out distribution. If (i) there exists a root ¥ y(8) to the equation




-10-
Elexp(-yy(®)t, + 0Y))] =1, (35)
(i) EC[" exp(-wn(8)¢ + ON()di] < =, (36)
(iii) b(0,1) ® E[exp(~yn(8)1 + ON(1)) : Ty > 1] < M an

for some M and (iv) b(8,1) = 0ast = oo, then

on(8.0)~an (@) e ® a5t > o, (38)
where
EL[ ™ exp(-wn(8)1 + ON())dr)
ay(6) E(tiexp(-yn(0)T, + 8Yy)] 49
so that (2) holds.

In applications of Theorem 7, it remains to verify conditions (i)~(iv) in Theorem 7 and
(4)7). It seems difficult t0 obtain good general results, but something can be said under strong
conditions.

Theorem 8. Suppose that { N(t) } is a cumulanive process with respect to (S, } and that t,; has
a spread out distribution. In addition, suppose thatr P(t, > K;) =0 and
P(N(ty) > K;) = 0 for some K| and K,. Then a unique root Y n(0) to (35) exists for all 6

and assumptions (ii)-(iv) of Theorem 7 hold for all 6. Moreover. ¥y is differentiable on R, with

derivative
C 0
_3'6["(""(0)’ )
wn(8) = . (40)
- 9),6
anN(wN( ) )
where
fn(7.0) m E[exp(-7T) + 6Y})] . 41)
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We can see the duality between N and T in the basic equation (35). In particular, if we switch
the roles of S, and N(s,), then §,. = N(S,) may be regenerative times and i'g_ - 7.'5__. =5,
may be cyciés associated with the inverse process T. When both N and T are cumulative
processes this way, we call N and T inverse cumulative processes. Then we have versions of

equation (55) for both processes, i.e., in addition to (35) for N, we have
E[CXP(-WT(G) Y] + 81,)] =1. (42)

It follows from (35) and (42) that the decay rate functions Wy and yr must be related by
-yr(-yx(0)) = 0 for all @ where yx(0) is finite, i.e., which implies (12) and (13), which is

consistent with Theorem 1.

Chang (3] focuses on a discrete-time version of the point process N. The following comes

from his Example 2.2. Recall that a family of random variables Z,, . . . , Z; is associated if
E[f1(Z))...fa(Z4)] 2 E[f1(Z1)])...E[ fa(Z4)]

for all nondecreasing real-valued functions f;.

Theorem 9. (Chang) If N has stationary and associated increments, then =" log Ee®N® is

nondecreasing in t and thus convergent, for each 0.

2. Proofs

We prove the theorems in the order: 2,3,1,6,7,8. (No further proof is needed for Theorems 4

and 5.)

Proof of Theorem 2. Since T, > aifandonlyif N(a) < ¢,
P(n~'T, > a) = P(T, > an) = P(N(an) < n),

from which (20) follows. From (20), we see that (21) holds if (22) holds, aad (23) holds if (14)

holds. To go the other way, note that, forany € > 0,
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P(™IN(t) < a™') S P(N(alyal < Tival) = P(Tryy > alva))
< P((rt/a])"Tr,,,] > a-¢g)

when ! is suitably large, where |x] is the greatest integer less than or equal to x and [x] is the

least integer greater than or equal to x. Hence, if (21) holds, then

lims'log POU-'N(t) < a™")

f=ben

< lim r~"1og P(([t/a))™' T, > a=€) = a~'u(a-¢)

Since € was arbitrary and u is continuous at g,

limelog PU~'N(1) < a') S a'u(a) .
t=ben

Similarly,

P(r"IN(t) < a™")2 P(N(a[ial < U/al) = P(T |y > ali/al)
2 P Wal) ™' Ty > a+e)

for 1 suitably large. Hence, if (21) holds, then
lims~! log}”(t’.l N@a) < a ') 2atua) .
f=ben
Hence, (22) holds. A similar argument shows that (23) implies (24). @&
Proof of Theorem 3. We apply the characterizations of the LDP in (1.2.7) and (1.2.8) on p. 6 of
Dembo and Zeitouni (5]. First we consider the upper bound. For any & < oo, let x; and x, be

the lower and upper boundary points for the level set y;(a) needed for the upper bound. By the

lower semicontinuity of /, any I" with T < y;()° has the property that
I (-ey1] Viy2=)

wherey, < x, andy; > x;. Hence, for such T,
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" Nog P 2(1)eT) < 17 1ogP(17' Z(1) € (—w,y; ) Ulyq,00)
S rYog max{2P("12(1) S y,) , 2PUTYZ() 2 y,) )
S (2/t) + max{r~'log P(+7'2(1) S yy) ., "l log P 2(0) 2 y7) )

so that
lims 'log P(1~'2(1)eT)
1 —dee

< max{lim: 'log P(1™'2(1) S y;) . lims~Ylog P(+-12Z(s) 2 y3) )
f=ben f=ben

S max{-I(y,). -I(y2)} S -a,

sincey; < x; SXSx3 <y;.

Now we consider the lower bound. For any x in the domain of /, and any measurable I" with
xe I, there is a neighborhood (x~8;,x+8;) < I'°. Let ¥ be the location of the minimum of /
and suppose that x < X. (The argument when x 2 X is essentially the same.) For any € given.
choose &, sufficiently small that /(x+8;) < /(x) + & Now

lim~'log P(1='Z2(1)eT) 2 lim1~'log P(+~ ' Z(1) e (x -8, ,x+5,))
I =den {=des

2 limt~t1og(P(171 2(1) S x+83)-P(~' Z(1) S x=8))) .
f=bes

However, for any €’,

P(‘-IZ(I) < I+82) > e-r(l(x¢8,)¢¢')

PU1Z(1) S x-8y) S e~ UE-B0-)
for all suitably large 1. Hence,
-t(l(x=8,)=I(x+84))-2¢")

PU'Z(1) S x485)=P(7' Z2() S x=8;) 2 I8 (1,

so that, after choosing €', §; and 8, so that /(x~8,)=I(x+82)-2¢" > 0,
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lime=! log P(r7'Z(1)eT) 2 ~1(x+83) =€ 2 ~I(x)~e~-¢’ .
f=don
Since € and £” were arbitrary,

lime'log P~ 'Z(el) 2 -1(x) . =m
e )

In our proof of Theorem 1 we use the following two lemmas,

Lemmal. For6 > 0,

Eexp(ON(1) = 1 + 18 fo”exp(:ex)P(N(x) > m)dx

and, for® < Q,

E exp(8N(9)) = =18 | " exp(1Bx) P(N(5) < m)dx .

Proof. Note that

N
Eexp(@N(n)-1 = E [ 10exp(10x)dx

= refo.exp(xex)l(N(t) > m)dx
< 18 [ " exp(18x) PN() > tx)dx

For 8 < 0, observe that

) Io.exp(tex)P(N(t) > &x)dx
= 10 Io'exp(rex)(l-P(N(r) S m)dx
= Io-teexp(tex)dx-refo'exp(tex)P(N(r) < x)dx
= 118 exp(18x) PN(1) < ) ds

since P(N(1) < tx) = P(N(t) S tx) almost surely with respect to Lebesque measure.
Lemma 2. if(2) and (4}~(7) hold for T, then

li-Et" log ECON(‘) < oo
§=ban

Jor0 < 0 < —yr(-w) = Bi.




-15-

Proof. For0 < 8 < —yr(—w) = P¥, choose yso that 0 < y < y7(0) and /r(y) > 6. To
see that this is possible, recall that /7 is continuous where it is finite and /7(0) = =yr(~e)if
Yy = 0. (If Yr > O, then I7(y) = = for some y in this region.) Then, by the Ginner-Ellis

theorem for {T,, },

limn~tlog P(T, < yn) = =I(y) .
L2 Y

Hence, there exists n, such that forn 2 ng
n~llog P(T, < yn) < =I(y) + &,
where € = (I/(y)-0)/2. Hence, forn 2 no,
P(T, < yn) S exp(~n(I(y)-€)) . (43)

Now

Ee®NO = 3 OP(N(1) = n)

n=0

S1+e® 3 e PN > n)

nel

S1+e T e®P(T, <1

=0

byl -
Z1+e T e P(Toct)+e® T e™P(T, <ym), 44
nul n=[esy)

where

(] vl
T eP(T, <1)s T e s et Myt @5)

an0 a=0

and, by (43),for 1 > yn,,

T MP(T, <7 S 3 ap@n-nU()-e)
e [t/y] ne vyl

exp(- [yl (1(y)-6)/2)

46
1-exp(=(1(y)-0)/2) “0
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Combining (44)<46), we obtain the desired conclusion. &

Proof of Theorem 1. We do the proof in only one direction, since the proofs in the two
directions are similar. Suppose that {T, } satisfies (2) and (4)<(7) with decay rate function yr.
Then, by the Gantner-Ellis theorem, { T, } obeys the LDP with LD rate function /7 = yr. By
Theorem 4, { N(r) } obeys the LDP with LD rate function /y defined by (14)—(18). We then let
Wy = Iy. Since I’ = Iy, it is easy to see that (12)—(18) are valid. For example, it is easy to
see that y y in (12) has the properties of a decay rate function (nondecreasing, convex, W(0) = 0
and (2)5)) if and only if W1 in (13) does. As indicated after Theorem 1, this is easy to see from
Figure 2. More formally, to establish convexity, suppose that yr is twice differentiable for
or < 6 < B (where y7(8) > 0). Since yy(0) = -w;‘(-é),w,(-w,,(e)) = -6and

. _ WEWE (-6)
YT Vv (-9))

Then we can represent a general 7 as the limit of a sequence {yr, : n 2 1} where each y7, is
strictly increasing and twice continuously differentiable in the interval (ar.Br).

Wrn(08) = yy(B)asn — . Since Yy, is convex for each a, so is Y.

Given yr and yy in (12) and (13), it is straightforward to verify that the convex conjugates
It = yr and Iy = yy defined by (6) have the properties (14)-(18). For example, for

Yy SxsSyyandx > 0,

Y (x) = sup{Ox~yy(6) : 0 € R}
= sup{Ox-yn(0) : ay S 0 S By}
= sup{wy'(0)x~0: ay S ¥i'(8) S By}
= sup({-yr(0)x+0:0y S -¥r(6) S Byl
= xsup{(8/x)-yr(0) : oy S ~yr(8) < By}
= x sup{(8/x)-y1(8) : ¥F' (~Bn) SO S Wi'(~an)}
= x sup{(0/x) - y7(8) :ar S0 < Pr}
= x sup{(8/x) - yr(8) : 0 € R} = xy7(1/x) .
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For vy = O = x, take the limit as x — 0, obtaining

wx(0) = limyx(x) = Limy 'y}(y)
xi0 yTee

Vi(x)

Iv(0) = lim = myr(y) = e .
x-0 Yo

A similar argument yields yy = Iy and yr = [7 given [y and /.

We now show that (2) holds for N when 0 < 8 < ~yr(—e) = BY

suffices to prove that
1~ log Io.exp(tﬂx)P(N(t) > x)dx = yp(9) .
Byl..emmaz.wecanchooseéwithe <8< ~yr(—e0)and
Ew imrtlog B0 < o
b
For € > 0 given, let M be the constant

M= (E - e)/(8-0) .

Then, by Markov's inequality,

];exp(xex)P(N(:) > m)dx

S EHNO [ exp(10x~rBx) dx
M

< EeaN(t) (e-t(a-‘)" )/'(é -0)

S —k exp(-t(é-G)M-logEea"“))
1(0-9)

1 - 1
S — exp(—=1[(0-0)M-E-¢]) = — (2¢e1)
o0 xp(=#{( § 8 exp

for ¢ sufficiently large. On the other hand,

. By Lemmal, it

47

48)
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M
[, exptt0x) PV(1) > ) ax
"_l(iﬁl)ll/n .

= ¥ exp(18x) P(N(t) > tx)dx
in0 M/n

neili+)M/n

<Y exp(t0(i+1)M/n) P(N(t) > itM/n)dx
i=0 M/n

n-1
< -El- 3 exp(16(i+ 1)M/n) P(N(t) > itM/n)
=

-1
< 7e‘°"""z exp(¢[8Mi/n—t"'1ogP(t"' N(1) > iM/n))
iwl

M nel )
< 10M/n i/n — ,
- e i§) exp(t[8Mi/n . ;g‘f/nl [%269))]

(49)

where n is an arbitrary positive integer. Combining (48) and (49), we obtain

iimr~log [~ exp(10x) P(N(1) > tx)dx
t—bes 0

52e+6-@-+ max {M_ inf Iy(x)}
n 0Sisn-1 N oM
n

by Lemma 1.2.15 on p. 7 of Dembo and Zeitouni {5]. However,

oJoax {—— - inf Iy(x)} S sup{Bx-In(x)} = wn(8)

Lettinge - Oandn — .o.weoompletetheﬁproof.

We now turn to the lower bound. For the same 6 and a new positive &, choose § and x such
that

Ox - In(x) 2 sx;pley -In(y)} - ¢

for |x=xo| < &. Then

[ exp(18x) PNY> mydx 2 [0 exp(s0x) PN ez +8)) dx

2 28 exp(10(xg=8)) P(+"'N(t) > x0+3),
so that
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lim =" log [~ exp(10x) P(N(1) > x)dx

{=dan
2 0(x0-8)=Iy(xg+8) = 8(xo+8)—In(x0+8)-25
2 Sl;pley-ln(y) }-28-¢

2 Yyn(8)-20-¢.
Finally, let 8 — 0 and € — O to complete the lim proof. Combining the im and lim proofs
yields (47).

We now consider the case in which § < 0. By Lemma 1, it suffices to show that

t~'log Io'exp(tex)P(N(t) < x)dx = Yn(B) a5t = oo . (50)

LetX = yy(0) and recall that /y(X) = 0. Let xvy = max{x,y}. Then note that

[ exp(r0x) PN < mdx
s [Texp(rox) PN() < x)dx + [exp(e0x)dx

n-1
< Y (¥/n)exp(10Xi/n) P(N(1) -< 1X(i +1)/n)-(10)~' exp(s6%)

iw0

sn=1
s -:— T exp(10%i/n — ty(E(i +1)/n)+e1)-(10)""' exp(16%)
in0

for ¢ sufficiently large. Hence,
FB ~llog ]o'exp(:ex)ruv(x) < m)dx
S max {(0Xi/n)~In(X(i+1)/n) + €}VvOX
1Sisn~1
S sup{0x—-In(x) + €e-0X/n}vOX
<

S (y(0) + e~-0x/n)vOX .

Now lete = 0and n — eo, and note that y(8) > 8y’ (0) for 8 < 0, to complete the iim proof.
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We now turn to the lower bound. Fore > 0 given, let 8 > 0and x, be such that

Ox -~ In(x) 2 Sl’lp{ay-ln(y)} -E.
Then

[ exptox) PV() < mydx 2 L:"_}‘exp(:ex)P(N(:) < t(xp-8))dx
228 exp (le(Xo + S)P(N(l) < 1(10—8)) R

so that
‘li_m rlog Io'exp(:ex)P(N(t) < tx)dx
20(xg + 8)=In(x0=8) = 0(xg=8)=In(x0~0) + 268
2 sup{0y - 7~(y))-e + 205 .
y
2 Yn(8) - € + 2606.
Nowletd — Oande — 0 to complete the proof of (50).
Finally, it remains to consider the upper boundary point % when 8% < «. Clearly,

im ¢ 'log EPO 2 yy(8)
f=ben

forany 6 < By. Thus, when yy(BN) = =,

Hﬂ‘-‘bg EPND 2 yy(BY) = + o

The only ambiguous case is when B} < s and yy(BN) < . B

Proof of Theorem 6. It is easy to see that the inverse map in (26) is contimuous from (S;. .M )

t0(-‘>'cT,'Mz)fmallr,anmzwhmxitismodiﬁedixnheobviousway:
gl () = min{t,x”'(0)},081570; . (51

When ¢, is suitably large, the minimum is not needed in (51). Now suppose that the LDP holds
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for {n='T |, 1 n 2 1} with (29). By the contraction principle in §4.2 of Dembo and Zeitouni

(1992), the LDP holds for {n~'N(n¢) : n 2 1} in (S} .M ) with good rate function

1
Tu(9) = inf{ [I7(8())ds : ye 4%, (0).y~' = ¢} . (52)
(4]

In (52), ¢ must be y~! according to (51). To obtain the inverse map in (26), for ¢ given, let

t2 = ¢(11). Then, for ye 46, (0)and y~! = ¢,

hi@) = [1:0i(s))ds
0

= [ 1r/bwsn s

o(s,)

= | I (1600 é(s)ds
9(0)

4
= fl/v(¢(s))ds. »
0
Proof of Theorem 7. In general, G(9,') in (34) is not a proper probability distribution.
However, our choice of y(0) in (35) guardntees that
F(0,dr) m exp(-y(0)1)G(6,dr) (53)

is a probability distribution function. Furthermore, F(6,dr) is equivalent to P(t, € dr), so that
F(0,) is spread out. Hence, we can apply Smith’s key renewal theorem, (4.4) on p. 120 of

Asmussen [1], to the renewal equation
$(0.1) = b(8.1) + [ 4(8,1-5)F(8,45) . (54)

where b(8.1) is in (37) and
$(6.1) = exp(=y(8)1)6(8.1) (55)

to obtain
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- " b(8.5)ds
9(0.1) = —‘L-—(——ﬂ—— aS [ = oo . (56)

fo' tF(8,dn)

(Conditions (ii)<(iv) imply that b(8,1) is directly Riemann integrable, using Proposition 4.1 (ii)
of Asmussen {1]; see Proposition 9 of Glynn and Whitt {9] for a related argument.) By Fubini's

theorem, we see that

10.5(9-3)4“ = fo"Elexp(-\v(e)r + ON(N); Ty > 1)dr
= EIO.CXP(-\V(G)t + ON() (T, > o) de
= Ef }'o" exp(—=y(0)t + ON(1))dr) )

and

fo-rF(e.dt) = Io'xs[exp(-w(e): + ON(D); T e di]
= E[exp(~y(8)T) + 08Y)1,] . (48)

Combining (56)—(58), yields the desired (38) and (39). =

Proof of Theorem 8. Under the boundedness assumptions, f(Y,8) in (41) is bounded by
exp(lylk, + |6lK;) and infinitely differentiable in RZ. Also, for each 0, f(-,0) is strictly
decreasing with f(7,0) = Oasy — o0 and f(7,0) = + « a5 ¥ = —~ . Hence, the root ¥(08)

of (35) exists for each 6. Moreover, it is easy to see that assumptions (ii)~(iv) hold.

To see that vy is differentiable with derivative (40), apply the implicit function theorem with

(35). Note that 3/3Y f(7.8) < O for all (v,8), so that the denominator is non-zero.
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